在这项工作中,研究了来自磁共振图像的脑年龄预测的深度学习技术,旨在帮助鉴定天然老化过程的生物标志物。生物标志物的鉴定可用于检测早期神经变性过程,以及预测与年龄相关或与非年龄相关的认知下降。在这项工作中实施并比较了两种技术:应用于体积图像的3D卷积神经网络和应用于从轴向平面的切片的2D卷积神经网络,随后融合各个预测。通过2D模型获得的最佳结果,其达到了3.83年的平均绝对误差。 - Neste Trabalho S \〜AO InvestigaDAS T \'Ecnicas de Aprendizado Profundo Para a previ \ c {c} \〜ate daade脑电站a partir de imagens de resson \ ^ ancia magn \'etica,Visando辅助Na Identifica \ c {C} \〜AO de BioMarcadores Do Processo Natural de Envelhecimento。一个identifica \ c {c} \〜ao de bioMarcarcores \'e \'util para a detec \ c {c} \〜ao de um processo neurodegenerativo em Est \'Agio无数,Al \'em de possibilitar Prever Um decl 'inio cognitivo relacionado ou n \〜ao \`一个懒惰。 Duas T \'ECICAS S \〜AO ImportyAdas E Comparadas Teste Trabalho:Uma Rede神经卷应3D APLICADA NA IMAGEM VOLUM \'ETRICA E UME REDE神经卷轴2D APLICADA A FATIAS DO PANIAS轴向,COM后面fus \〜AO DAS PREDI \ C {c} \ \ oes个人。 o Melhor ResultAdo Foi optido Pelo Modelo 2D,Que Alcan \ C {C} OU UM ERRO M \'EDIO ABSOLUTO DE 3.83 ANOS。
translated by 谷歌翻译
Three main points: 1. Data Science (DS) will be increasingly important to heliophysics; 2. Methods of heliophysics science discovery will continually evolve, requiring the use of learning technologies [e.g., machine learning (ML)] that are applied rigorously and that are capable of supporting discovery; and 3. To grow with the pace of data, technology, and workforce changes, heliophysics requires a new approach to the representation of knowledge.
translated by 谷歌翻译
We describe a Physics-Informed Neural Network (PINN) that simulates the flow induced by the astronomical tide in a synthetic port channel, with dimensions based on the Santos - S\~ao Vicente - Bertioga Estuarine System. PINN models aim to combine the knowledge of physical systems and data-driven machine learning models. This is done by training a neural network to minimize the residuals of the governing equations in sample points. In this work, our flow is governed by the Navier-Stokes equations with some approximations. There are two main novelties in this paper. First, we design our model to assume that the flow is periodic in time, which is not feasible in conventional simulation methods. Second, we evaluate the benefit of resampling the function evaluation points during training, which has a near zero computational cost and has been verified to improve the final model, especially for small batch sizes. Finally, we discuss some limitations of the approximations used in the Navier-Stokes equations regarding the modeling of turbulence and how it interacts with PINNs.
translated by 谷歌翻译
The number of international benchmarking competitions is steadily increasing in various fields of machine learning (ML) research and practice. So far, however, little is known about the common practice as well as bottlenecks faced by the community in tackling the research questions posed. To shed light on the status quo of algorithm development in the specific field of biomedical imaging analysis, we designed an international survey that was issued to all participants of challenges conducted in conjunction with the IEEE ISBI 2021 and MICCAI 2021 conferences (80 competitions in total). The survey covered participants' expertise and working environments, their chosen strategies, as well as algorithm characteristics. A median of 72% challenge participants took part in the survey. According to our results, knowledge exchange was the primary incentive (70%) for participation, while the reception of prize money played only a minor role (16%). While a median of 80 working hours was spent on method development, a large portion of participants stated that they did not have enough time for method development (32%). 25% perceived the infrastructure to be a bottleneck. Overall, 94% of all solutions were deep learning-based. Of these, 84% were based on standard architectures. 43% of the respondents reported that the data samples (e.g., images) were too large to be processed at once. This was most commonly addressed by patch-based training (69%), downsampling (37%), and solving 3D analysis tasks as a series of 2D tasks. K-fold cross-validation on the training set was performed by only 37% of the participants and only 50% of the participants performed ensembling based on multiple identical models (61%) or heterogeneous models (39%). 48% of the respondents applied postprocessing steps.
translated by 谷歌翻译
Source-free domain adaptation (SFDA) aims to transfer knowledge learned from a source domain to an unlabeled target domain, where the source data is unavailable during adaptation. Existing approaches for SFDA focus on self-training usually including well-established entropy minimization techniques. One of the main challenges in SFDA is to reduce accumulation of errors caused by domain misalignment. A recent strategy successfully managed to reduce error accumulation by pseudo-labeling the target samples based on class-wise prototypes (centroids) generated by their clustering in the representation space. However, this strategy also creates cases for which the cross-entropy of a pseudo-label and the minimum entropy have a conflict in their objectives. We call this conflict the centroid-hypothesis conflict. We propose to reconcile this conflict by aligning the entropy minimization objective with that of the pseudo labels' cross entropy. We demonstrate the effectiveness of aligning the two loss objectives on three domain adaptation datasets. In addition, we provide state-of-the-art results using up-to-date architectures also showing the consistency of our method across these architectures.
translated by 谷歌翻译
The selection of an optimal pacing site, which is ideally scar-free and late activated, is critical to the response of cardiac resynchronization therapy (CRT). Despite the success of current approaches formulating the detection of such late mechanical activation (LMA) regions as a problem of activation time regression, their accuracy remains unsatisfactory, particularly in cases where myocardial scar exists. To address this issue, this paper introduces a multi-task deep learning framework that simultaneously estimates LMA amount and classify the scar-free LMA regions based on cine displacement encoding with stimulated echoes (DENSE) magnetic resonance imaging (MRI). With a newly introduced auxiliary LMA region classification sub-network, our proposed model shows more robustness to the complex pattern cause by myocardial scar, significantly eliminates their negative effects in LMA detection, and in turn improves the performance of scar classification. To evaluate the effectiveness of our method, we tests our model on real cardiac MR images and compare the predicted LMA with the state-of-the-art approaches. It shows that our approach achieves substantially increased accuracy. In addition, we employ the gradient-weighted class activation mapping (Grad-CAM) to visualize the feature maps learned by all methods. Experimental results suggest that our proposed model better recognizes the LMA region pattern.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
Artificial Intelligence (AI) is having a tremendous impact across most areas of science. Applications of AI in healthcare have the potential to improve our ability to detect, diagnose, prognose, and intervene on human disease. For AI models to be used clinically, they need to be made safe, reproducible and robust, and the underlying software framework must be aware of the particularities (e.g. geometry, physiology, physics) of medical data being processed. This work introduces MONAI, a freely available, community-supported, and consortium-led PyTorch-based framework for deep learning in healthcare. MONAI extends PyTorch to support medical data, with a particular focus on imaging, and provide purpose-specific AI model architectures, transformations and utilities that streamline the development and deployment of medical AI models. MONAI follows best practices for software-development, providing an easy-to-use, robust, well-documented, and well-tested software framework. MONAI preserves the simple, additive, and compositional approach of its underlying PyTorch libraries. MONAI is being used by and receiving contributions from research, clinical and industrial teams from around the world, who are pursuing applications spanning nearly every aspect of healthcare.
translated by 谷歌翻译
在本文中,我们研究了DRL算法在本地导航问题的应用,其中机器人仅配备有限​​量距离的外部感受传感器(例如LIDAR),在未知和混乱的工作区中朝着目标位置移动。基于DRL的碰撞避免政策具有一些优势,但是一旦他们学习合适的动作的能力仅限于传感器范围,它们就非常容易受到本地最小值的影响。由于大多数机器人在非结构化环境中执行任务,因此寻求能够避免本地最小值的广义本地导航政策,尤其是在未经训练的情况下,这是非常兴趣的。为此,我们提出了一种新颖的奖励功能,该功能结合了在训练阶段获得的地图信息,从而提高了代理商故意最佳行动方案的能力。另外,我们使用SAC算法来训练我们的ANN,这表明在最先进的文献中比其他人更有效。一组SIM到SIM和SIM到现实的实验表明,我们提出的奖励与SAC相结合的表现优于比较局部最小值和避免碰撞的方法。
translated by 谷歌翻译
人类机器人相互作用(HRI)对于在日常生活中广泛使用机器人至关重要。机器人最终将能够通过有效的社会互动来履行人类文明的各种职责。创建直接且易于理解的界面,以与机器人开始在个人工作区中扩散时与机器人互动至关重要。通常,与模拟机器人的交互显示在屏幕上。虚拟现实(VR)是一个更具吸引力的替代方法,它为视觉提示提供了更像现实世界中看到的线索。在这项研究中,我们介绍了Jubileo,这是一种机器人的动画面孔,并使用人类机器人社会互动领域的各种研究和应用开发工具。Jubileo Project不仅提供功能齐全的开源物理机器人。它还提供了一个全面的框架,可以通过VR接口进行操作,从而为HRI应用程序测试带来沉浸式环境,并明显更好地部署速度。
translated by 谷歌翻译